Environmental Research ## Ground Control Survey at Fort Benning, Georgia by Charles D. Hahn **BACKGROUND:** The Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP), Ecosystem Characterization and Monitoring Initiative (ECMI) is a long-term (more than 10 years) ecosystem characterization and monitoring program being conducted in conjunction with the host site at Fort Benning, GA. As part of this program, the U.S. Army Engineer Research and Development Center (ERDC) has developed a protocol to measure erosion/deposition dynamics in selected watershed areas on the installation (Figure 1). In order to accurately measure and remeasure the terrain surface over time, it was necessary to construct permanent ground reference points in the areas to be monitored. These reference points were accurately surveyed so that the data can be directly compared to previously collected data. The most Figure 1. ECMI Soil Erosion/Deposition Sites precise way to survey these reference points is to use static Global Positioning System (GPS) techniques and other precision survey techniques. However, due to the number of sites to be monitored (more than 20), a static GPS network this large would be too costly to collect and to process the GPS data. **PURPOSE:** It was decided that a combination of real-time kinematic (RTK) GPS techniques and static survey techniques would provide a much less expensive method to provide the necessary survey control at each site. A static GPS survey was used to establish a control network of high accuracy (first order standards). The reference stations (base stations) would then be used for RTK surveys to actually survey the instrument locations at the measurement sites. **LOCATION OF SURVEY CONTROL:** Prior to the initiation of the survey, survey control databases at the U.S. Department of Commerce, National Oceanographic and Atmospheric Administration, and the National Geodetic Survey (NGS) were searched to locate suitable control in the area. Requirements for suitable control were first order or higher horizontal and vertical control. Several control points were identified in this search, and descriptions were printed. The locations of these control points were then plotted on a map in the Delorme Street Atlas (Figure 2). On 23 March 2001, a ground search was initiated to physically locate selected control points and flag them For the purposes of this document, reference points are the points constructed as part of this survey. Control points refer to survey control points published by the National Geodetic Survey (NGS). Figure 2. Static GPS Network for later use. Control points Troy and Y 454 were located to the southwest, FAA CSG ARP to the northwest, and P-8 to the southeast. No suitable control point was located to the northeast. A second search was made of the NGS database to determine if a suitable vertical control point could be located. Z227 was located north of Fort Benning in a position suitable for use with GPS. Additionally, Continuously Operating Reference Stations (CORS) at Miller's Ferry, Alabama, and Macon, Georgia were selected to be included in the survey. **Acquisition of GPS Data:** During the period 24-25 March 2001, reference points were installed at three locations on Fort Benning. These locations are at the Carmouche range (CARMOUCHE) adjacent to the ERDC weather station, ¹ near the Natural Resources complex (NR1), and at the back site location for LCTA site 90 (L90-4). Each reference point consisted of a 2.5-in. (6-cm) aluminum hub affixed to a 48-in. (1.22-m) piece of galvanized steel conduit driven flush with the ground. A 6-in.- (15-cm-) diameter by 20-in. (51-cm) PVC collar was placed around the hub, and poured full of concrete. Each hub was stamped with the designation and a centering mark. GPS data were acquired on 26 and 27 March 2001. Trimble 4000 SSE and 4700 GPS receivers were used. The data collection sessions were from 0900 until 1700 EST. Data were not collected from Y 454 because this was an alternate station. On 26 March, data were collected on Troy, P-8, and FAA CSG ARP. On 27 March, data were collected at Z227, the local network (CARMOUCHE, NR1, and L144-4), and the two CORS. All GPS data were divided into 2-hr segments for initial baseline processing using the Trimble Navigation Wave® Processor. **Network Adjustment:** Once the baselines (solutions between each pair of stations) were processed, network adjustment processing was begun, using the Trimble Navigation Trimnet® Network Adjustment package. Apriori errors (antenna height errors and centering errors) were set, ERDC has a network of 10 meteorological stations at Fort Benning supporting the SERDP ECMI program. and the coordinates of the Macon CORS were fixed. The network was then adjusted until it passed the chi-squared test (a statistical test of network fit). Final adjustment results met first-order accuracy standards (precision 1:100,000 or higher) with the lowest precision report of 1:160,196 (CAR-MOUCHE to Z227, a distance of 8,765 m). The horizontal 1-sigma error (amount of uncertainty) on this line was 5.47 cm. The average 1-sigma uncertainty for the control point CARMOUCHE was 4.11 cm, for L90-4 it was 3.57 cm, and for NR1 it was 3.73 cm. Complete covariance results are included in Appendix A. Error ellipses and the 1-sigma error histogram are included in Appendix B. Final NAD83 latitude/longitude and Universal Transverse Mercator (UTM) postions are shown below. | Point Name | Latitude | Longitude | Northing (m) | Easting (m) | Elev. (m) | |------------|------------------|------------------|--------------|-------------|-----------| | CARMOUCHE | 32°28'27.71346"N | 84°45'35.14701"W | 3595227.975 | 710528.565 | 141.503 | | L90-4 | 32°24'43.16995"N | 84°44'19.51594"W | 3588357.580 | 712853.787 | 146.385 | | NR1 | 32°23'04.47438"N | 84°51'58.77084"W | 3585066.575 | 700711.167 | 140.581 | RTK survey: After the reference network had been surveyed and the final positions computed, RTK surveys were conducted to establish control for the microtopography surveys. Three monuments were constructed as above at each site for occupation by Leica TCA 1102 robotic total stations and a fourth was constructed for use as a back site. Each of these positions was occupied with an RTK rover GPS receiver and if possible, four separate occupations were recorded for each point. These points were then averaged to compute the final position. These positions and the associated accuracies are included as Appendix C. **POINTS OF CONTACT:** For additional information, contact Mr. Charles D. Hahn, U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS (601-634-3529, *Charles.D.Hahn@erdc.usace.army.mil*). This document should be cited as follows: Hahn, C. D. (2001). "Ground control survey at Fort Benning, Georgia," *SERDP Technical Notes Collection* (ERDC/EL TN-ECMI-01-02), U.S. Army Engineer Research and Development Center, Vicksburg, MS. www.wes.army.mil/el/ #### **ACKNOWLEDGMENTS:** This technical note was prepared for the Ecosystem Characterization and Monitoring Initiative (ECMI), sponsored by the Strategic Environmental Research and Development Program (SERDP), Ecosystem Management Project (SEMP). The technical monitor was Dr. Robert Holst, SERDP Program Manager. The work was performed under the direction of the Ecosystem Evaluation and Engineering Division (EE) of the Environmental Laboratory (EL), U.S. Army Engineer Research and Development Center (ERDC). The EL Principal Investigator was Mr. Charles D. Hahn and Co-Investigators were Mr. Mark R. Graves and Dr. David L. Price, EL. Project Manager for the ECMI is Mr. Harold W. #### ERDC/EL TN-ECMI-01-02 September 2001 West, EL, and Program Manager for the SEMP is Dr. Harold E. Balbach of the Construction Engineering Research Laboratory (CERL), ERDC, Champaign, IL. Many individuals contributed to the support of this project including the following: Mr. John Brent, Mr. Pete Swiderek, and Ms. Theresa Davo of Fort Benning, GA, the host site for the SEMP; Mr. Hugh Westbury, the host site coordinator of CERL, Mr. Thomas Berry, Mr. David Leese, and Mr. John Newton of EL. At the time of publication of this technical note, Acting Director of EL was Dr. Edwin A. Theriot and Chief of EE was Dr. David J. Tazik. Dr. James R. Houston was Director of ERDC, and COL John W. Morris III, EN was Commander. ### Appendix A Covariant Matrix SUMMARY OF COVARIANCES NETWORK = FtBenning TIME = Thu Mar 29 09:21:19 2001 Definition of precision $(E \times S)^2 = C^2 + P^2$: Horizontal: Precision (P) expressed as: ratio Propagated linear error (E): U.S. (standard error of adjusted horizontal distance) Scalar (S) on propagated linear error: 1.0000 Constant error term (C): 0.0000 3-Dimensional: Precision (P) expressed as: ratio Propagated linear error (E): U.S. (standard error of adjusted slope distance) Scalar (S) on propagated linear error: 1.0000 Constant error term (C): 0.0000 Using orthometric height errors | FROM/ | AZIMUTH/ | 1.00σ | DISTANCE/ | 1.00σ | HOR PREC/ | |----------------|------------|---------|-------------|---------|------------| | TO | DELTA H | 1.00σ | DELTA h | 1.00σ | 3-D PREC | | CARMOUCHE | 284°51'29" | 0.46" | 17839.630m | 0.0363m | 1: 491469 | | FAACSG | -24.7607m | 0.2365m | -23.4257m | 0.9297m | 1: 491469 | | CARMOUCHE | 164°03'15" | 1.04" | 7193.446m | 0.0344m | 1: 209140 | | L904 | +5.9803m | 0.2187m | +4.8826m | 1.0809m | 1: 209140 | | CARMOUCHE mcn1 | 77°23'58" | 0.07" | 115226.745m | 0.0396m | 1: 2912940 | | | -53.1813m | 0.2156m | -52.8150m | 1.3480m | 1: 2912940 | | CARMOUCHE mlf1 | 260°57'26" | 0.03" | 251570.304m | 0.0392m | 1: 6423207 | | | -104.4333m | 0.2156m | -102.9075m | 2.0849m | 1: 6423207 | | CARMOUCHE | 225°12'55" | 0.51" | 14127.521m | 0.0382m | 1: 369900 | | NR1 | +0.1689m | 0.2302m | -0.9221m | 1.0842m | 1: 369900 | | CARMOUCHE | 158°32'21" | 0.10" | 82704.926m | 0.0355m | 1: 2327300 | | P8 | -22.8858m | 1.3509m | -33.3707m | 0.9297m | 1: 2327300 | | CARMOUCHE | 238°12'26" | 0.05" | 135497.609m | 0.0411m | 1: 3296740 | | TROY | +36.2980m | 0.8616m | +29.9163m | 0.9297m | 1: 3296740 | | CARMOUCHE | 342°01'20" | 1.37" | 8765.339m | 0.0547m | 1: 160196 | |-----------|------------|---------|-------------|---------|------------| | Z227 | -10.6170m | 0.3744m | -9.1377m | 0.9297m | 1: 160196 | | FAACSG | 120°46'35" | 0.29" | 22392.671m | 0.0315m | 1: 710361 | | L904 | +30.7411m | 0.2808m | +28.3084m | 0.9035m | 1: 710361 | | FAACSG | _**_ | _**_ | _**_ | _**- | _**_ | | mcn1 | -28.4205m | 0.1806m | -29.3893m | 1.3520m | _**_ | | FAACSG | _**_ | _**- | -**- | _**- | _**_ | | mlf1 | -79.6725m | 0.1806m | -79.4818m | 1.8365m | _**_ | | FAACSG | 153°29'09" | 0.44" | 16220.077m | 0.0328m | 1: 494221 | | NR1 | +24.9296m | 0.2986m | +22.5036m | 0.8869m | 1: 494221 | | FAACSG | _**_ | -**- | _**_ | _**_ | _**_ | | P8 | +1.8750m | 1.4730m | _**_ | _**_ | _**_ | | FAACSG | _**_ | _**- | _**_ | _**_ | _**_ | | TROY | +61.0588m | 0.9782m | _**_ | _**_ | _**_ | | FAACSG | 75°23'23" | 0.77" | 15016.830m | 0.0613m | 1: 245089 | | Z227 | +14.1438m | 0.3382m | _**_ | _**- | 1: 245089 | | L904 | 73°49'55" | 0.05" | 115031.323m | 0.0333m | 1: 3453898 | | mcn1 | -59.1616m | 0.2651m | -57.6977m | 1.3387m | 1: 3453898 | | L904 | 262°35'17" | 0.02" | 252535.807m | 0.0332m | 1: 7599352 | | mlf1 | -110.4136m | 0.2651m | -107.7901m | 2.0948m | 1: 7599352 | | L904 | 255°49'12" | 0.52" | 12381.228m | 0.0331m | 1: 373552 | | NR1 | -5.8114m | 0.1328m | -5.8048m | 1.0741m | 1: 373552 | | L904 | 158°01'35" | 0.09" | 75547.939m | 0.0299m | 1: 2525027 | | P8 | -28.8661m | 1.2284m | -38.2534m | 0.9035m | 1: 2525027 | | L904 | 241°11'05" | 0.05" | 133712.475m | 0.0331m | 1: 4034022 | | TROY | +30.3177m | 0.7403m | +25.0336m | 0.9035m | 1: 4034022 | | L904 | 342°56'58" | 0.73" | 15956.300m | 0.0533m | 1: 299604 | | Z227 | -16.5973m | 0.4215m | -14.0204m | 0.9035m | 1: 299604 | | mcn1 | _**_ | _**_ | _**- | _**- | _**_ | | mlf1 | _**_ | _**_ | -50.0925m | 2.7960m | _**_ | | mcn1 | 254°39'33" | 0.05" | 127405.824m | 0.0349m | 1: 3647104 | | NR1 | +53.3502m | 0.2841m | +51.8929m | 1.3924m | 1: 3647104 | | mcn1 | _**_ | _**_ | _**_ | _**_ | _**_ | |------|------------|---------|-------------|---------|------------| | P8 | +30.2955m | 1.4426m | +19.4443m | 1.3520m | _**_ | | mcn1 | _**_ | _**_ | _**_ | _**_ | _**_ | | TROY | +89.4793m | 0.9546m | +82.7313m | 1.3520m | _**_ | | mcn1 | 262°20'46" | 0.10" | 116375.816m | 0.0612m | 1: 1900691 | | Z227 | +42.5643m | 0.3395m | +43.6773m | 1.3520m | 1: 1900691 | | mlf1 | 81°31'12" | 0.03" | 240245.289m | 0.0349m | 1: 6879552 | | NR1 | +104.6022m | 0.2841m | +101.9854m | 2.0237m | 1: 6879552 | | mlf1 | _**_ | _**_ | _**_ | _**_ | _**_ | | P8 | +81.5475m | 1.4426m | +69.5368m | 1.8365m | _**_ | | mlf1 | _**_ | _**_ | _**_ | _**_ | _**_ | | TROY | +140.7313m | 0.9546m | +132.8238m | 1.8365m | _**_ | | mlf1 | 77°34'07" | 0.05" | 250358.643m | 0.0613m | 1: 4086735 | | Z227 | +93.8163m | 0.3395m | +93.7698m | 1.8365m | 1: 4086735 | | NR1 | 148°55'58" | 0.09" | 78195.027m | 0.0329m | 1: 2375377 | | P8 | -23.0547m | 1.2122m | -32.4486m | 0.8869m | 1: 2375377 | | NR1 | 239°38'40" | 0.06" | 121773.148m | 0.0347m | 1: 3505535 | | TROY | +36.1291m | 0.7235m | +30.8384m | 0.8869m | 1: 3505535 | | NR1 | 21°45'37" | 0.60" | 19700.529m | 0.0537m | 1: 367187 | | Z227 | -10.7859m | 0.4329m | -8.2156m | 0.8869m | 1: 367187 | | P8 | _**_ | _**_ | _**_ | _**_ | _**_ | | TROY | +59.1838m | 0.5556m | _**_ | _**_ | _**_ | | P8 | 339°02'34" | 0.14" | 91455.625m | 0.0561m | 1: 1628792 | | Z227 | +12.2688m | 1.5201m | _**_ | _**_ | 1: 1628792 | | TROY | 54°01'11" | 0.08" | 137853.635m | 0.0606m | 1: 2275257 | | Z227 | -46.9150m | 1.0401m | _**_ | _**_ | 1: 2275257 | ### Appendix B Error Ellipses and Histogram # **Appendix C Site Instrument Positions and Uncertainties** | Name | Northing (m) | Easting (m) | Elevation (m) | Hz Acc (m) | Vt Acc (m) | |--------|--------------|-------------|---------------|------------|------------| | B1-1 | 3589746.344 | 710182.194 | 92.032 | 0.005 | 0.018 | | B1-2 | 3589727.672 | 710180.969 | 93.211 | 0.005 | 0.019 | | B1-3 | 3589724.472 | 710191.025 | 93.258 | 0.005 | 0.017 | | B1-4 | 3589745.372 | 710188.743 | 92.159 | 0.005 | 0.018 | | B2-1 | 3589810.315 | 711480.894 | 131.148 | 0.006 | 0.015 | | B2-3 | 3589840.511 | 711497.378 | 134.294 | 0.007 | 0.016 | | B2-4 | 3589808.382 | 711507.717 | 132.776 | 0.006 | 0.017 | | B4-2 | 3588838.130 | 711817.068 | 124.514 | 0.007 | 0.010 | | B4-3 | 3588816.489 | 711809.248 | 123.093 | 0.009 | 0.012 | | B4-4 | 3588815.355 | 711798.850 | 122.053 | 0.009 | 0.012 | | B6-1 | 3587334.675 | 711463.698 | 124.975 | 0.011 | 0.019 | | B6-2 | 3587318.506 | 711477.828 | 124.097 | 0.010 | 0.013 | | B6-3 | 3587331.204 | 711498.129 | 123.120 | 0.010 | 0.018 | | B6-4 | 3587309.896 | 711448.034 | 125.271 | 0.008 | 0.012 | | B7-1 | 3587301.077 | 712751.340 | 127.996 | 0.009 | 0.018 | | B7-2 | 3587267.066 | 712740.277 | 124.762 | 0.007 | 0.014 | | B7-3 | 3587284.806 | 712724.230 | 125.549 | 0.007 | 0.016 | | B7-4 | 3587293.481 | 712728.369 | 127.358 | 0.009 | 0.015 | | B8-1 | 3586178.052 | 710260.605 | 149.160 | 0.010 | 0.018 | | B8-2 | 3586202.811 | 710247.658 | 149.106 | 0.007 | 0.018 | | B8-4 | 3586434.786 | 710490.653 | 144.143 | 0.009 | 0.016 | | B9-1 | 3586184.214 | 711554.648 | 125.734 | 0.012 | 0.018 | | B9-3 | 3586154.969 | 711573.951 | 125.835 | 0.014 | 0.019 | | B10-1 | 3586154.358 | 712766.668 | 151.052 | 0.013 | 0.016 | | B10-2 | 3586139.304 | 712758.188 | 153.584 | 0.011 | 0.015 | | B10-3 | 3586160.089 | 712731.517 | 147.68 | 0.01 | 0.014 | | B10-4 | 3586160.078 | 712731.521 | 147.671 | 0.011 | 0.016 | | L90-1 | 3588430.062 | 712628.411 | 149.784 | 0.009 | 0.016 | | L90-2 | 3588411.658 | 712656.989 | 147.204 | 0.010 | 0.018 | | L90-3 | 3588398.716 | 712652.163 | 146.835 | 0.007 | 0.013 | | L90-4 | 3588357.580 | 712853.787 | 146.385 | | | | L144-1 | 3589311.812 | 709895.846 | 129.219 | 0.009 | 0.016 | | L144-4 | 3586415.268 | 710874.487 | 138.222 | 0.010 | 0.019 | | L147-1 | 3596526.932 | 707425.521 | 107.072 | 0.011 | 0.015 | | L147-2 | 3596539.913 | 707433.141 | 105.041 | 0.011 | 0.011 | | L147-3 | 3596521.091 | 707439.734 | 105.067 | 0.013 | 0.017 | | L147-4 | 3596543.676 | 707422.268 | 104.431 | 0.013 | 0.019 | | Name | Northing (m) | Easting (m) | Elevation (m) | Hz Acc (m) | Vt Acc (m) | |--------|--------------|-------------|---------------|------------|------------| | L204-1 | 3590402.190 | 710513.454 | 116.022 | 0.011 | 0.015 | | L204-3 | 3590421.952 | 710548.992 | 118.089 | 0.014 | 0.018 | | L204-4 | 3590428.920 | 710524.552 | 117.046 | 0.012 | 0.016 | | L211-1 | 3586578.272 | 701721.553 | 104.948 | 0.009 | 0.014 | | L211-2 | 3586572.910 | 701701.552 | 103.244 | 0.010 | 0.017 | | L211-3 | 3586592.511 | 701702.900 | 103.098 | 0.009 | 0.016 | | L211-4 | 3586484.966 | 701740.989 | 107.711 | 0.009 | 0.016 | | L315-1 | 3589301.847 | 714832.630 | 152.509 | 0.010 | 0.019 | | L315-2 | 3589272.250 | 714853.908 | 149.788 | 0.011 | 0.019 | | L315-3 | 3589270.394 | 714844.952 | 150.213 | 0.009 | 0.016 | | S1-1 | 3590458.157 | 712565.015 | 121.878 | 0.009 | 0.013 | | S1-3 | 3590437.684 | 712590.918 | 118.174 | 0.010 | 0.016 | | S1-4 | 3590466.305 | 712556.047 | 122.784 | 0.012 | 0.018 | | S2-3 | 3588984.072 | 712675.654 | 126.144 | 0.013 | 0.015 | | S2-4 | 3588978.598 | 712667.832 | 126.405 | 0.011 | 0.013 | | S3-2 | 3589033.699 | 714136.276 | 129.994 | 0.007 | 0.014 | | S3-4 | 3589007.632 | 714135.738 | 127.074 | 0.007 | 0.015 | | S4-1 | 3587379.931 | 714044.238 | 119.843 | 0.008 | 0.016 | | S4-2 | 3587385.820 | 714009.724 | 116.165 | 0.008 | 0.014 | | S4-4 | 3587403.952 | 714002.031 | 114.669 | 0.006 | 0.013 | | S5-1 | 3587468.022 | 715686.339 | 140.696 | 0.006 | 0.011 | | S5-4 | 3587485.458 | 715695.245 | 136.949 | 0.008 | 0.017 | | S6-1 | 3586028.106 | 714177.522 | 156.609 | 0.010 | 0.014 | | S6-2 | 3586013.312 | 714175.307 | 156.655 | 0.010 | 0.017 | | S6-4 | 3586045.171 | 714165.838 | 155.651 | 0.011 | 0.015 | | S7-1 | 3585813.084 | 715645.053 | 142.023 | 0.013 | 0.019 | | S7-2 | 3585822.229 | 715662.405 | 138.091 | 0.012 | 0.016 | | S7-4 | 3585833.476 | 715670.466 | 139.344 | 0.008 | 0.012 | | S8-3 | 3585836.595 | 717083.306 | 164.906 | 0.010 | 0.017 | | S8-4 | 3585856.005 | 717078.133 | 166.088 | 0.010 | 0.016 | | S9-1 | 3584533.285 | 715631.838 | 162.769 | 0.009 | 0.014 | | S9-4 | 3584529.245 | 715646.148 | 163.669 | 0.011 | 0.019 | | S10-4 | 3584603.513 | 717157.092 | 137.914 | 0.005 | 0.017 | **NOTE:** The contents of this technical note are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such products.